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Abstract—Crowdsensing paradigm facilitates a wide range of
data collection, where great efforts have been made to address its
fundamental issue of matching workers to their assigned tasks.
In this paper, we reexamine this issue by considering the spatio-
temporal worker mobility and task arrivals, which more fits the
actual situation. Specifically, we study the location-aware and
location diversity based dynamic crowdsensing system, where
workers move over time and tasks arrive stochastically. We
first exploit offline crowdsensing by proposing a combinatorial
algorithm, for efficiently distributing tasks to workers. After that,
we mainly study the online crowdsensing, and further consider an
indispensable aspect of worker’s fair allocation. Apart from the
stochastic characteristics and discontinuous coverage, the non-
linear expectation is incurred as a new challenge concerning
fairness issue. Based on Lyapunov optimization with perturbation
parameters, we propose online control policy to overcome those
challenges. Hereby we can maintain system stability and achieve
a time average sensing utility arbitrarily close to the optimum.
Performance evaluation on real data set validates the proposed
algorithm, where 116% gain of fairness is achieved at the expense
of 12% loss of sensing value on average.

I. INTRODUCTION

Recent years have witnessed the unprecedented develop-
ment of mobile devices which are embedded with powerful
processers and plentiful sensors (e.g., GPS, thermometer, mi-
crophone, camera). A newly-emerged crowdsensing paradig-
m is recognized to outsource a collection of sensing tasks
to workers that carry mobile devices. Thereafter, numerous
crowdsensing systems have been implemented to collect and
process large-scale sensory data, such as SmartRoad for traffic
detection [1], TransitLabel for transit stations labeling [2],
Aircloud for air quality monitoring [3], and Ear-phone for
noise map construction [4].

Considering the sensing process in practical crowdsensing
systems [1]-[4], gathering data at specific locations or regions
is of central importance. The reason behind is that data
collected at irrelevant locations are meaningless and useless.
In line with this observation, location awareness requires that
workers can perform those spatial sensing tasks if they happen
to be in the vicinities.

Regarding location awareness, location diversity is pro-
posed to characterize the spatial influence on workers and
tasks. Workers are unevenly distributed in space and their
mobility patterns also vary dramatically, thus task’s priority
and worker’s sensing cost are heterogeneous with respect to
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locations [5][6]. Location diversity can bridge the gap between
physical context and worker (task) heterogeneity [7].

Few works have considered location information in crowd-
sensing system. Different from most studies without loca-
tion awareness [10][11], location consideration will introduce
more spatial constraints [6][8], which increase the problem
complexity of task assignment but meanwhile improve the
matching precision between task requirement and work ability.
However, these location-aware studies only focus on offline
crowdsensing, in which the information of workers and tasks
is given in prior.

A more realistic situation is the online crowdsensing, where
the system state is dynamic with time varying information of
workers and tasks. As it is challenging to predict the future
system state, a feasible way is to use the current information
for online decision-making [12][13]. However, none of these
works consider the location awareness in task assignment due
to the hardness of handling dynamic spatial constraints. Anoth-
er indispensable element in online crowdsensing is worker’s
fair allocation, which guarantees adequate completion for even
low value tasks in a long period.

There is an imperious demand to study the spatio-temporal
factors in crowdsensing system. On the one hand, workers
and tasks are specified at different locations with different
location diversities. On the other hand, workers will move over
time while tasks will arrive dynamically. Therefore, online
crowdsensing with location awareness and location diversity
can capture the features of both spatio-temporal aspects, which
also more conforms to the actual situation. Unfortunately,
most of the existing works have ignored these features in
crowdsensing system.

In this paper, we are motivated to address the task assign-
ment problem considering location awareness and location
diversity in both offline and online crowdsensing. However,
it is particularly challenging due to the following three-fold
reasons. First, location awareness makes the matching between
workers and tasks further constrained by their geo-positions,
thus increasing the problem complexity. Second, discontinuous
coverage is incurred by worker movement in online crowd-
sensing, hence dynamic task assignment is sensitive to both
location and time. Third, worker’s fair allocation introduces
the non-linear expectation problem which is hard to handle.

To overcome these challenges, we first carefully character-
ize an entropy based metric to measure location diversity.
After that, we formulate location-aware models for offline
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and online crowdsensing with location diversity. For offline
crowdsensing, we design a combinatorial algorithm to de-
couple the offline problem into each subproblem, which is
optimally solved through an efficient searching method. We
mainly focus on the online crowdsensing, where we harness
Lyapunov optimization to bypass the problem of uncertain
future information. We capture the features of mobile worker
movement and dynamic task arrival in online crowdsensing,
and ensure no-underflow [16][17] of tasks to prevent a waste
of worker resources. Aside from optimizing the sensing value
in online crowdsensing, we extend the model to maximize the
proportional fairness that achieves a fair allocation of worker
resources. The performance evaluated on real data set proves
the stability and efficiency of the crowdsensing system. The
main contributions are summarized as follows:
• We comprehensively study the location-aware and location

diversity based offline and online crowdsensing systems,
where the rarely considered spatio-temporal features of
both workers and tasks are captured. To the best of our
knowledge, we are the first to study such a crucial but non-
trivial problem in crowdsensing.

• In offline crowdsensing, we design a combinatorial al-
gorithm to decompose the task assignment problem into
multiple subproblems which are optimally solved through
branch-and-bound. The obtained result is proved to be 2-
approximate compared with the optimal solution.

• In online crowdsensing, we propose a perturbed Lyapunov
function to deal with discontinuous coverage and worker’s
fair allocation. Auxiliary variable is introduced to handle the
non-linear expectation incurred by fairness consideration.
We can maintain system stability and achieve a time average
utility within O(1/V ) of the optimum for any V > 0.
In the rest of this paper, we first formulate the offline

and online crowdsensing models in Section II. Section III
provides the combinatorial algorithm for offline crowdsensing.
Followed by the main focus on Lyapunov optimization for
online crowdsensing in Section IV. Evaluations are performed
in Section V. We finally discuss the related work in Section VI
and draw the conclusion in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Location Diversity

Two types of location diversity are frequently recognized:
Task Location Diversity (TLD) and Worker Location Diversity
(WLD), which are measured in terms of location entropy [7].

A visit to a location is identified by worker ID, location
index (such as latitude and longitude), and timestamp. For a
given location l in the set of locations L, Ol is the total count
of the visits by the set of workers U. Let Ou, u ∈ U be the set
of location visits of worker u with O = ∪u∈UOu. The set of
workers visiting location l is denoted as Ul, similarly, the set
of locations visited by worker u is noted as Lu. Let Ou,l be
the visits to location l by worker u, namely Ou,l = Ol ∩Ou.
The probability of a random drawn from Ol falls in Ou,l is
Pl(u) =

|Ou,l|
|Ol| . Analogously, the probability of a random draw
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Fig. 1. Location-aware crowdsensing system. Workers walk around with
sensing ranges and tasks dynamically arrive. The area is divided into grids

from Ou belongs to Ou,l is Pu(l) =
|Ou,l|
|Ou| . TLD and WLD

are defined:

TLDl = −
∑
u∈Ul

Pl(u)× logPl(u),

WLDu = −
∑
l∈Lu

Pu(l)× logPu(l).
(1)

Remark. High TLD implies frequent workers’ visits with
equal proportions, hence tasks are more likely to be completed,
and vice versa. Meanwhile high WLD denotes worker visiting
many locations with uniform distribution, thus the worker is
inclined to walk around, and vice versa. As a consequence,
task with high TLD has low priority (value), while worker
with high WLD gets low moving cost.

B. System Overview

In the crowdsensing system shown in Fig. 1, there are a
set of participating workers W = {w1, w2, ..., wN},W ⊆ U,
and M types of served sensing tasks M = {1, 2, ...,M}
(measuring noise, taking temperature and etc.). Each worker
(task) is located within a grid region of the managed area
by the crowdsensing platform, which is denoted by L =
{l1, l2, ..., lK}. Considering location awareness, worker wi can
only complete a sensing task if the location is covered by wi’s
sensing range Ri(lik), where lik is wi’s located region and
Ri(lik) is assumed to be greater than a location region. A task
of type j in region lk is associated with a value vjk composed
by two parts: original value ovj and diversity value dvk. ovj
is the inherent value of a type j task, while dvk represents
the task priority that inversely relates to TLDlk . Analogously,
worker wi undertaking a type j task incurs a cost cij also
consisting of two components: original cost ocj and diversity
cost dci. ocj is the consumption of sensing data for type j
task, and dci which is inversely related to WLDwi measures
the moving cost within the sensing range Ri(lik). Due to
the ability heterogeneity, each worker wi is associated with
an expertise vector Ei = [ei1, ei2, ..., eiM ] with eij ∈ [0, 1]
denoting wi’ expertise to type j task. We assume the expertise
of each worker is qualified, and task values are distinctly
higher than worker costs.
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C. Problem Formulation

1) Offline Crowdsensing: The information of both work-
ers and tasks is given in offline crowdsensing. Suppose the
crowdsensing platform publishes a set of sensing tasks Γ of
M types. For any task τn ∈ Γ with identified task type nj

and located region lnk
, the task value is specified as vnjnk

.
Worker wi has a sensing budget Bi due to the constraints of
mobility pattern and sensing ability (such as battery volume,
sensor configuration), then wi’s total cost is restricted by Bi.
Let bin ∈ {0, 1} indicate the assignment between worker wi

and task τn. bin = 1 means wi undertaking τn if lnk
∈ Ri(lik),

otherwise bin = 0.
The crowdsensing platform aims to optimize the overall

value of sensing tasks performed by the workers under both the
budget and sensing range constraints. Therefore, the OFFlIne
CrowdsEnsing of Value Maximization (OFFICE-VM) problem
is formulated as follows:

max
∑

wi∈W

∑
τn∈Γ

bineinjvnjnk

s.t.
∑
τn∈Γ

bincinj ≤ Bi, ∀wi ∈ W

bin ∈ {0, 1}, if bin = 1, lnk ∈ Ri(lik), ∀wi ∈ W,∀τn ∈ Γ∑
wi∈W

bin ≤ 1,∀τn ∈ Γ,

(2)
where einj and cinj are wi’s expertise and cost to τn,

respectively. The last formula denotes each task τn can be
assigned to at most one worker. OFFICE-VM contains a set
of coupled NP-hard subproblems (task assignment for each
worker), which makes it much tougher than only solving every
subproblem individually.

2) Online Crowdsensing: In online crowdsensing, workers
continuously move around in the managed area, and tasks
dynamically arrive over time. We consider the crowdsensing
system runs in a slotted time t ∈ {0, 1, 2, ...}, which varies
from minutes to hours on the basis of sensing requirements.

Let Ajk(t), 0 ≤ Ajk(t) ≤ Amax
jk denote the new arrival tasks

of type j at region lk in time slot t, with Ajk(t) i.i.d over
time slots. Note that lk is a region, and the arriving tasks
are specified at some locations within lk, hence those tasks
are considered different. Qjk(t) represents the task queue of
type j at region lk, with ajk(t), 0 ≤ ajk(t) ≤ Ajk(t) tasks
admitted into Qjk(t) in time slot t. Since workers are moving
around, they can only complete the assigned tasks in current
time slot, otherwise the assigned tasks may be out of their
sensing ranges due to the movement, which is referred to as
discontinuous coverage. Considering this feature, worker wi

can perform at most ki tasks in each time slot because time slot
length is limited. Let bijk(t) be the assigned tasks in Qjk(t)
to wi based on sensing range Ri(lik(t)) where lik(t) is wi’s
current location. Therefore, the cost ci(t) of worker wi is:

ci(t) =

M∑
j=1

K∑
k=1

bijk(t)cij , (3)

with the time average expected cost ci =
limT→∞

1
T

∑T−1
t=0 E[ci(t)]. Analogously, ci ≤ Bi since

sensing ability (like battery volume) is restricted. The sensing
value ujk(t) of task queue Qjk(t) is computed:

ujk(t) =

N∑
i=1

bijk(t)eijvjk, (4)

and the time average expected sensing value is ujk =

limT→∞
1
T

∑T−1
t=0 E[ujk(t)].

Consequently, the whole time average sensing utility is:

f(u) =
M∑
j=1

K∑
k=1

f(ujk), (5)

in which f(ujk) function has two forms. 1) f(ujk) = ujk,
then f(u) = u = limT→∞

1
T

∑T−1
t=0

∑M
j=1

∑K
k=1 E[ujk(t)]

which is the whole time average sensing value, similar to
the offline crowdsensing; 2) f(ujk) = log(1 + βujk), then
f(u) = limT→∞

∑M
j=1

∑K
k=1 log{1 + β 1

T

∑T−1
t=0 E[ujk(t)]}

that considers fairness issue in sensing utility [18]. Overall, the
ONline CrowdsEnsing of Utility Maximization (ONCE-UM)
problem is formulated as follows:

max f(u)

s.t. ci ≤ Bi,∀wi ∈ W
M∑
j=1

K∑
k=1

bijk(t) ≤ ki ∀wi ∈ W

bijk(t) ∈ {0, 1, ..., ki},∀wi ∈ W, ∀j ∈ M,∀lk ∈ L
if bijk(t) > 0, lk ∈ Ri(lik (t)),∀wi ∈ W,∀j ∈ M,∀lk ∈ L
Qjk(t) is stable ∀j ∈ M, ∀lk ∈ L.

(6)
The stability of Qjk(t) in the last formula means:

lim sup
T→∞

1

T

T−1∑
t=0

E[Qjk(t)] < ∞. (7)

Aside from the online characteristics, ONCE-UM has to
consider worker’s discontinuous coverage of tasks, and the
fair allocation of worker resources. Both of them require much
more extra efforts to deal with.

III. LOCATION-AWARE AND LOCATION DIVERSITY BASED
OFFLINE CROWDSENSING

Offline crowdsensing describes the scenario where the
crowdsensing platform has received a set of sensing tasks
await to be completed by enlisted workers. Therefore, the
information of workers and tasks is known in advance. Offline
scenario can be viewed as the case of static workers and tasks
without dynamic changes.

A. Complexity Analysis of OFFICE-VM

Recall OFFICE-VM in Eq. (2). For any single worker wi ∈
W, the subproblem becomes:

max
∑
τn∈Γ

bineinjvnjnk

s.t.
∑
τn∈Γ

bincinj ≤ Bi

bin ∈ {0, 1}, if bin = 1, lnk
∈ Ri(lik), ∀τn ∈ Γ,

(8)
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which is a typical knapsack problem. However, solving the
OFFICE-VM is no longer solving the knapsack problem for
each worker separately. Because each task τn ∈ Γ can
be assigned to at most one worker, that is the results of
worker wi can influence that of worker wi′ if Ri(lik) and
Ri′(li′k) overlap. As a consequence, the knapsack problems
for different workers are coupled together.

OFFICE-VM is more like a Generalized Assignment Prob-
lem (GAP) [14] which has been proved to be APX-hard. A
problem of APX-hardness is a set of NP optimization problems
(the knapsack problem in this paper) that are addressed with
polynomial-time approximation algorithms. However, differ-
ent from traditional GAP, OFFICE-VM has a unique feature:
each worker only needs to consider the sensing tasks covered
by its sensing range. Hence, when handling each knapsack
problem, we can seek for the solution in a much smaller
subset of task set Γ. This feature allows us to design an
efficient searching algorithm to find the optimal result for the
subproblem in Eq. (8).

B. Offline Combinatorial Algorithm

As our former analysis, we can harness the methods of
GAP to facilitate the settlement of OFFICE-VM, while also
combing its specific feature. Due to APX-hardness, we resort
to approximation algorithms to obtain a near optimal result.

Definition 1. Let u(x) be a utility function and F be the
feasibility constraints. A feasible solution x is said to be
r−approximate if ru(x) ≥ u(x∗), where x∗ is the optimal
solution.

Intuitively, any approximation algorithm has r > 1, thus our
goal is to acquire a lower value of r. We learn from the idea
in [14] to design an Offline Combinatorial Algorithm (OCA),
in which an efficient searching algorithm is implemented.

The principle behind OCA is to solve the subproblem in
Eq. (8) for each worker sequentially, and meanwhile utilizing
an indicator vector T = [T1, ..., T|Γ|] to record the assigned
worker of each task. The task indicators enable the decoupling
function among subproblems for overlapping workers. For
any task τn ∈ Γ, indicator Tn is initialized to 0. If τn is
momentarily assigned to worker wi, let Tn = i. Denote
vnjnk

(i) as the transient value of τn when assigned to wi,
which is calculated:

vnjnk
(i) =

{
einjvnjnk

if Tn = 0

einjvnjnk
− ei′njvnjnk

if Tn = i′.
(9)

For instance, when processing the subproblem for wi, if lnk
∈

Ri(lik) and Tn = i′, then vnjnk
(i) = einjvnjnk

− ei′njvnjnk
.

If wi undertakes τn, update Tn = i. Through this operation,
the overall sensing value is certainly increased since only if
vnjnk

(i) > 0, namely einj > ei′nj , τn can be selected by wi.
Now, we shed light on the solution to the subproblem

described in Eq. (8), which is proved to be a knapsack
problem. A shared approach is the greedy algorithm that
can achieve e

e−1 approximation ratio for each subproblem.
However, since the covered task set for each worker is highly

Algorithm 1: OCA for OFFICE-VM
Input: Workers W, costs {cij}, budgets {Bi}, expertise

{Ei}, sensing ranges {Ri(lik)}, tasks Γ, task
locations LΓ, values {vjk}

Output: Worker-Task Assignment
1 T = 0;
2 for wi ∈ W do
3 Γi = ∅;
4 for τn ∈ Γ do
5 if lnk

∈ Ri(lik) then
6 Γi = Γi ∪ τn;
7 calculate vnjnk

(i) according to (9);

8 revoke branch-and-bound for wi;
9 for τn ∈ Γi do

10 if τn is assigned to wi then
11 Tn = i;

12 return T;

likely to be much smaller than Γ, we can appeal to an efficient
searching algorithm to obtain the optimal result. Considering
Eq. (8), we propose branch-and-bound algorithm to obtain the
optimal solution.

The OCA for OFFICE-VM is depicted in Algorithm 1. We
first solve the subproblem for each worker (Lines 1-8), and
then update the task indicators to record the transient assigned
workers (Lines 9-11). Note that we utilize branch-and-bound
(Line 8) to obtain the optimal solution for each subproblem
under the sensing range constraint (Lines 5-7). A detailed
description for branch-and-bound is also presented in technical
report [20] due to space limit.

Lemma 1. OCA in Algorithm 1 is a 2-approximation for
OFFICE-VM.

Proof: See Appendix A in technical report [20].

IV. LOCATION-AWARE AND LOCATION DIVERSITY BASED
ONLINE CROWDSENSING

Online crowdsensing represents a more practical situation,
where tasks dynamically arrive and workers continuously walk
around over time. The future information of workers and tasks
is unknown and unpredictable in prior, thus making it much
more difficult to address ONCE-UM in Eq (6). Considering
these features, we exploit Lyapunov optimization [15] to
circumvent the challenging problems.

Different from previous studies of Lyapunov optimiza-
tion [12][13], the discontinuous coverage caused by worker
movement makes it impossible to accumulate tasks in each
worker, thus the task assignment is sensitive to both location
and time. Apart from this characteristic, fairness issue in long-
term online crowdsensing should also be further investigated.
To comprehensively study online crowdsensing, we first con-
sider to maximize the sensing value, and then extend the model
to optimize the proportional fairness of worker resources.
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A. Online Crowdsensing of Value Maximization

According to Eq. (5), when maximizing the time average
sensing value, f(ujk) = ujk. ONCE-UM problem in E-
q. (6) becomes ONline CrowdsEnsing of Value Maximization
(ONCE-VM) problem with the objective function f(u) = u =
limT→∞

1
T

∑T−1
t=0

∑M
j=1

∑K
k=1 E[ujk(t)].

Combining the value ujk(t) of task queue Qjk(t) in Eq. (4),
the whole sensing value u(t) in time slot t is:

u(t) =

N∑
i=1

M∑
j=1

K∑
k=1

bijk(t)eijvjk. (10)

1) Queue Dynamics: In time slot t, bijk(t) tasks in task
queue Qjk(t) are completed by worker wi, and ajk(t) new
tasks are admitted into Qjk(t). Denote bjk(t) =

∑N
i=1 bijk(t)

as the tasks assigned to all the workers W, thus Qjk(t) evolves
according to:

Qjk(t+ 1) = max[Qjk(t)− bjk(t), 0] + ajk(t). (11)

Note that bjk(t) =
∑N

i=1 bijk(t) ≤
∑N

i=1 ki and ajk(t) ≤
Ajk(t) ≤ Amax

jk . For notation convenience, let Q(t) =
{Qjk(t) : ∀j ∈ M, ∀lk ∈ L}.

Each worker wi has a cost budget Bi with ci ≤ Bi, hence
we need to maintain a (virtual) cost queue Zi(t) for wi. The
queue dynamics of Zi(t) is:

Zi(t+ 1) = max[Zi(t) + ci(t)−Bi, 0], (12)

where ci(t) =
∑M

j=1

∑K
k=1 bijk(t)cij ≤ ki maxj cij accord-

ing to Eq. (3). To satisfy the budget constraint, Zi(t) should
be stable, which is similar to Eq. (7). Denote Z(t) = {Zi(t) :
wi ∈ W}, and Θ(t) = (Q(t),Z(t)).

2) Lyapunov Optimization: In each time slot, we are sup-
posed to make the decision based on the current available
information. Lyapunov optimization dispenses us with the
unreliable prediction of future system state. Define perturbed
Lyapunov function in terms of Qjk(t) and Zi(t) as follows:

L(Θ(t)) =
1

2
||Q(t)− θ||+ 1

2
||Z(t)||

=
1

2

M∑
j=1

K∑
k=1

(Qjk(t)− θjk)
2 +

1

2

N∑
i=1

Z2
i (t).

(13)

θjk is a perturbation parameter which can guarantee no-
underflow in task queue to avoid a waste of worker re-
sources [16][17]. No-underflow constraint prevents the situa-
tion where workers are left unallocated for a long time. If we
push Lyapunov function to a small value, each queue backlog
will stay in a low level, thus maintaining queue stability.

To achieve queue stability, we utilize one slot (conditional)
Lyapunov drift:

∆(Θ(t)) = E[L(Θ(t+ 1))− L(Θ(t))|Θ(t)], (14)

where the expectation is due to the randomness of dynamics
in workers and tasks. Meanwhile, we also need to balance
the maximization of the sensing value. Therefore, drift-minus-
utility is considered: ∆(Θ(t)) − V E[u(t)|Θ(t)]. V > 0 is a

tunable parameter that represents an “importance weight” on
how much we stress maximizing the sensing value.

Lemma 2. drift-minus-utility ∆(Θ(t))− V E[u(t)|Θ(t)] sat-
isfies:

∆(Θ(t))− V E[u(t)|Θ(t)]

≤ D −
N∑
i=1

E[Zi(t)Bi|Θ(t)] +
M∑
j=1

K∑
k=1

E[ajk(t)(Qjk(t)− θjk)|Θ(t)]

+

N∑
i=1

M∑
j=1

K∑
k=1

E{bijk(t)[Zi(t)cij − (Qjk(t)− θjk)− V eijvjk]|Θ(t)},

(15)
where D = 1

2

∑M
j=1

∑K
k=1 max[(Amax

jk )2, (
∑N

i=1 ki)
2] +

1
2

∑N
i=1 max[B2

i , (ki maxj cij)
2].

Proof: See Appendix B in technical report [20].
We are interested in minimizing the upper bound of drift-

minus-utility in Lemma 2 to enable the tradeoff between
queue stability and value maximization.

3) Online Control Policy: We design an Online Control
Policy (OCP) to minimize the upper bound of drift-minus-
utility only based on current available information, that can
achieve O(1/V ) of the maximum time average sensing value.
Specifically, when observing queues Qjk(t) and Zi(t), OCP
will decide ajk(t) and bijk(t) accordingly. From Eq. (15), the
first and second terms D and

∑N
i=1 E[Zi(t)Bi|Θ(t)] on the

right hand are given in each time slot t, thus OCP is going to
deal with the third and fourth terms.

a) Task Admission Control: For each task queue Qjk(t),
the new arrival tasks are Ajk(t), among which ajk(t) are
admitted into Qjk(t). We choose ajk(t) in consistent with
the following problem:

min ajk(t)(Qjk(t)− θjk)

s.t. 0 ≤ ajk(t) ≤ Ajk(t).
(16)

The decision of ajk(t) reduces to a simple threshold rule:

ajk(t) =

{
0 if Qjk(t) ≥ θjk

Ajk(t) if Qjk(t) < θjk.
(17)

Intuitively, task admission of OCP can be carried out in a
distributed manner for each Qjk(t).

b) Worker-Task Assignment: Worker wi can complete
bijk(t) tasks out of Qjk(t), which is restricted by sensing
range Ri(lik(t)). Besides,

∑M
j=1

∑K
k=1 bijk(t) ≤ ki due to the

limited time slot length. Therefore, the worker-task assignment
of OCP is performed according to the following problem:

min
N∑
i=1

M∑
j=1

K∑
k=1

bijk(t)[Zi(t)cij − (Qjk(t)− θjk)− V eijvjk]

s.t.
M∑
j=1

K∑
k=1

bijk(t) ≤ ki ∀wi ∈ W

bijk(t) ∈ {0, 1, ..., ki},∀wi ∈ W,∀j ∈ M,∀lk ∈ L
if bijk(t) > 0, lk ∈ Ri(lik(t)), ∀wi ∈ W, ∀j ∈ M, ∀lk ∈ L.

(18)
Decisions of bijk(t) for different workers are coupled together

in underflow scenario, thus making it more arduous to solve
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Eq. (18). Here we consider no-underflow constraint, and also
present a detailed discussion about underflow situation in
Section IV-C of technical report [20].

Now we address the problem in Eq. (18). For wi,
the problem becomes to decide bijk(t) that minimizes∑M

j=1

∑K
k=1 bijk(t)[Zi(t)cij − (Qjk(t) − θjk) − V eijvjk].

Since Qjk(t), Zi(t) are known, OCP checks all task queues
in Ri(lik(t)), and finds j∗ ∈ M, lk∗ ∈ Ri(lik(t)) that
minimizes Zi(t)cij − (Qjk(t) − θjk) − V eijvjk. Therefore,
when Zi(t)cij∗ − (Qj∗k∗(t) − θj∗k∗) − V eij∗vj∗k∗ ≥ 0,
let bij∗k∗(t) = 0. When Zi(t)cij∗ − (Qj∗k∗(t) − θj∗k∗) −
V eij∗vj∗k∗ < 0, assign bij∗k∗(t) = ki. For any other
Qjk(t), bijk(t) = 0. From another perspective, if we regard
−[Zi(t)cij−(Qjk(t)−θjk)−V eijvjk] as the regulated value,
OCP allocates all the worker resources to the task which
can gain the maximum and positive regulated value. Worker-
task assignment can be implemented concurrently for each wi

under no-underflow constraint.
c) Queue Update: After OCP, update Qjk(t) and Zi(t)

according to Eq. (11) and Eq. (12), respectively.
4) Performance Analysis for OCP: We theoretically ana-

lyze the performance of the designed OCP in this part.

Theorem 1. Suppose Qjk(0) = θjk, ∀j ∈ M, ∀lk ∈ L,
Zi(0) = 0, ∀wi ∈ W, for any parameter V > 0, we have
the following properties of OCP.

a) The queue backlog of each task queue Qjk(t) for all t
is bounded by:

0 ≤ Qjk(t) ≤ θjk +Amax
jk . (19)

b) The queue backlog of each cost queue Zi(t) for all t
satisfies:

Zi(t) ≤ max{Zmax
i , Zmax

i + ki max
j

cij −Bi} (20)

where Zmax
i = maxj,lk

Amax
jk +V eijvjk

cij
.

c) The no-underflow condition for every Qjk(t) is that
perturbation parameter θjk satisfies:

θjk ≥ V (max
wi

eij)vjk + 2

N∑
i=1

ki, (21)

d) Denote u∗ as the optimal time average sensing value for
ONCE-VM in Eq. (6). The time average sensing value achieved
by OCP satisfies:

lim
T→∞

1

T
E[u(t)] ≥ u∗ − D

V
. (22)

Proof: See Appendix C in technical report [20].

B. Online Crowdsensing of Fairness Maximization

Maximizing the sensing value only will lead to severe
starvation for low value task queues with no workers allocated.
Therefore, fair distribution of worker resources among differ-
ent task queues is crucial for long-term online crowdsensing.
To this end, we further extend value maximization to fairness
maximization, which is also validated in Section V in terms
of coverage ratio.

Proportional fairness is a common fairness metric, where the
allocation of resources is required to be proportional to ujk

of each Qjk(t). Maximizing the logarithms log(ujk) has been
shown to satisfy proportional fairness [18]. Frequently, log(1+
βujk) is utilized to enable the same function. Hence f(ujk) =
log(1 + βujk) in Eq. (5) when we aim to maximize the
time average proportional fairness. Consequently, ONCE-UM
problem in Eq. (6) becomes ONline CrowdsEnsing of Fair-
ness Maximization (ONCE-FM) problem with the objective
f(u) = limT→∞

∑M
j=1

∑K
k=1 log{1 + β 1

T

∑T−1
t=0 E[ujk(t)]}.

1) Auxiliary Variable: By introducing auxiliary variable
γjk(t) with 0 ≤ γjk(t) ≤ umax

jk , we can transform maximizing
logarithm function of the time average into maximizing the
time average logarithm function. From Eq. (4), we have
γjk(t) ≤ umax

jk ≤
∑N

i=1 kieijvjk. Jensen’s inequality yields:

1

T

T−1∑
t=0

f(γjk(t)) ≤ f(
1

T

T−1∑
t=0

γjk(t)),

1

T

T−1∑
t=0

E[f(γjk(t))] ≤ f(
1

T

T−1∑
t=0

E{γjk(t)}).

(23)

According to [15], instead of solving ONCE-FM in Eq. (6),
we handle the following problem:

max
M∑
j=1

K∑
k=1

f(γjk) = lim
T→∞

1

T

T−1∑
t=0

M∑
j=1

K∑
k=1

E[f(γjk(t))]

s.t. constraints in Eq. (6)

γjk ≤ ujk, 0 ≤ γjk(t) ≤
N∑
i=1

kieijvjk, ∀j ∈ M, ∀lk ∈ L.

(24)
Eq. (24) implies that the transformed problem has an objective
of the time average logarithm function, and more constraints
for auxiliary variables compared to ONCE-FM.

2) Queue Dynamics: In addition to task queue Qjk(t) and
cost queue Zi(t), there is one more (virtual) auxiliary queue
Gjk(t), which evolves obeying the following rule:

Gjk(t+ 1) = max[Gjk(t) + γjk(t)− ujk(t), 0]. (25)

Gjk(t) also should be stable. The dynamics of Qjk(t) and
Zi(t) are the same as Eq. (11) and Eq. (12), respectively.
Analogously, denote G(t) = {Gjk(t) : ∀j ∈ M, ∀lk ∈ L},
and Θ(t) = (Q(t),Z(t),G(t)).

3) Lyapunov Optimization: We still consider the no-
underflow constraint in ONCE-FM. Define a perturbed Lya-
punov function as:

L(Θ(t)) =
1

2
||Q(t)− κ||+ 1

2
||Z(t)||+ 1

2
||G(t)||

=
1

2

M∑
j=1

K∑
k=1

(Qjk(t)− κjk)
2 +

1

2

N∑
i=1

Z2
i (t) +

1

2

M∑
j=1

K∑
k=1

G2
jk(t),

(26)
where κjk is a perturbation parameter. Hence,

we get Lyapunov drift: ∆(Θ(t)) = E[L(Θ(t +
1)) − L(Θ(t))|Θ(t)], and drift-minus-utility:
∆(Θ(t))− V

∑M
j=1

∑K
k=1 E[f(γjk(t))|Θ(t)].
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Lemma 3. drift-minus-utility satisfies:

∆(Θ(t))− V

M∑
j=1

K∑
k=1

E[f(γjk(t))|Θ(t)] ≤ D′

−
N∑
i=1

E[Zi(t)Bi|Θ(t)] +
M∑
j=1

K∑
k=1

E[ajk(t)(Qjk(t)− κjk)|Θ(t)]

+

N∑
i=1

M∑
j=1

K∑
k=1

E{bijk(t)[Zi(t)cij − (Qjk(t)− κjk)]|Θ(t)}

−
N∑
i=1

M∑
j=1

K∑
k=1

E[bijk(t)eijvjkGjk(t)|Θ(t)]

+

M∑
j=1

K∑
k=1

E[γjk(t)Gjk(t)− V f(γjk(t))|Θ(t)].

(27)
where D′ = 1

2

∑M
j=1

∑K
k=1{max[(Amax

jk )2, (
∑N

i=1 ki)
2] +

(
∑N

i=1 kieijvjk)
2}+ 1

2

∑N
i=1 max[B2

i , (ki maxj cij)
2].

Proof: See Appendix D in technical report [20].
4) Fair Online Control Policy: We design a Fair On-

line Control Policy (FOCP) to minimize the upper bound
of drift-minus-utility in Eq. (27). In each time slot, with
observed queues Qjk(t), Zi(t), Gjk(t), FOCP determines
ajk(t), bijk(t), γjk(t).

a) Fair Auxiliary Variable Decision: To compute γjk(t),
FOCP solves the following problem:

min γjk(t)Gjk(t)− V f(γjk(t))

s.t. 0 ≤ γjk(t) ≤
N∑
i=1

kieijvjk,
(28)

where f(γjk(t)) = log(1 + βγjk(t)). Let g(γjk(t)) =
γjk(t)Gjk(t) − V log(1 + βγjk(t)) and derive g with respect
to γjk(t), we have:

g′(γjk(t)) = Gjk(t)−
V β

1 + βγjk(t)
. (29)

If g′(γjk(t)) = 0, then γjk(t) = V
Gjk(t)

− 1
β . Thus, FOCP

decides γjk(t) in line with the following rule:

γjk(t) =



0 if Gjk(t) > V β

V

Gjk(t)
− 1

β
if Gjk(t) ∈ [

V β

1 + β
∑N

i=1 kieijvjk
, V β]

N∑
i=1

kieijvjk if Gjk(t) <
V β

1 + β
∑N

i=1 kieijvjk
.

(30)

b) Fair Task Admission Control: Similar to the task
admission control in OCP, FOCP admits ajk(t) into Qjk(t)
following a simple threshold rule:

ajk(t) =

{
0 if Qjk(t) ≥ κjk

Ajk(t) if Qjk(t) < κjk.
(31)

c) Fair Worker-Task Assignment: In fair worker-task
assignment, FOCP decides bijk(t) for each worker wi with

respect to task queue Qjk(t) covered by Ri(lik(t)). The
decision is through solving the problem below:

min
N∑
i=1

M∑
j=1

K∑
k=1

bijk(t)[Zi(t)cij − (Qjk(t)− κjk)− eijvjkGjk(t)]

s.t.
M∑
j=1

K∑
k=1

bijk(t) ≤ ki ∀wi ∈ W

bijk(t) ∈ {0, 1, ..., ki}, ∀wi ∈ W, ∀j ∈ M, ∀lk ∈ L
if bijk(t) > 0, lk ∈ Ri(lik(t)),∀wi ∈ W, ∀j ∈ M,∀lk ∈ L.

(32)

Under no-underflow constraint, the computation for bijk(t)
is effective. Homoplastically, FOCP traverses all task queues in
Ri(lwk

(t)), and finds j′ ∈ M, lk′ ∈ Ri(lik(t)) that minimizes
Zi(t)cij − (Qjk(t) − κjk) − eijvjkGjk(t). If Zi(t)cij′ −
(Qj′k′(t) − κj′k′) − eij′vj′k′Gj′k′(t) < 0, let bij′k′(t) = ki,
otherwise bij′k′(t) = 0. As for any other j ∈ M, lk ∈ L,
let bijk(t) = 0. The underflow situation is also discussed in
technical report [20] Section IV-C.

d) Queue Update: After FOCP, queues Qjk(t), Zi(t)
and Gjk(t) are updated according to Eq. (11), Eq. (12) and
Eq. (25), respectively.

5) Performance Analysis for FOCP: We will illustrate the
performance of FOCP in the following theorem.

Theorem 2. Suppose Qjk(0) = κjk, Gjk(0) = 0, ∀j ∈
M,∀lk ∈ L, Zi(0) = 0,∀wi ∈ W, for any parameter V > 0,
we have the following properties for FOCP.

a) The queue backlog of each task queue Qjk(t) for all t
is bounded by:

0 ≤ Qjk(t) ≤ κjk +Amax
jk . (33)

b) The queue backlog of each auxiliary queue Gjk(t)
satisfies Gjk(t) ≤ Gmax

jk for all t, where:

Gmax
jk = max[V β,

V β

1 + β
∑N

i=1 kieijvjk
+

N∑
i=1

kieijvjk].

(34)
c) The queue backlog of each cost queue Zi(t) for all t is

bounded by:

Zi(t) ≤ max{ZGmax
i , ZGmax

i + ki max
j∈M

cij −Bi} (35)

where ZGmax
i = maxj,lk

Amax
jk +eijvjkG

max
jk

cij
, and Gmax

jk is
defined in Eq. (34).

d) For any perturbation parameter κjk, if it satisfies:

κjk ≥ (max
wi

eij)vjkG
max
jk + 2

N∑
i=1

ki, (36)

with Gmax
jk defined in Eq. (34), task queue Qjk(t) will not

suffer from underflow.
e) Denote f(u′) as the optimal time average fairness for

ONCE-FM in Eq. (6). The time average fairness produced by
FOCP satisfies:

M∑
j=1

K∑
k=1

f(ujk) ≥ f(u′)− D′

V
, (37)

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

2426



where ujk = limT→∞
1
T

∑T−1
t=0 E[ujk(t)].

Proof: See Appendix E in technical report [20].

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the crowd-
sensing system, as well as comparing the results of the
proposed methods to baseline methods.

A. Data Set and Parameter Settings

We leverage a real data set which includes contributors’
trajectories in a campus [19] composed by over 130 thousand
location records. We divide the area into 300m× 300m small
grid regions. After that, we filter out abnormal contributors’
trajectories, and obtain trajectories in K = 86 regions.

First calculate the location diversity TLD and WLD. Let
diversity value dvk = 1

TLDlk
+1 and diversity cost dci =

1
WLDwi

+1 . The maximum task arrivals Amax
jk is proportional

to TLDlk . ovj uniformly distributes in (1, 3), and oci is
uniformly sampled in (0.2, 0.4). Budget Bi is randomly valued
in (1.2, 1.5), while constraint of limited time slot length ki
is a random integer in [4, 6]. Qualified expertise Ei takes
values in (0.5, 1). Sensing range Ri(lik) covers 9 regions
including the located region and the surrounding 8 regions.
Two mobility models are considered: Random Walk (RW)-
workers randomly stay in one of the covered 9 regions in
next time slot; Real Trace (RT)-workers follow the traces in
the real data set. We compare our proposed algorithms with
two baseline algorithms:
• Random Algorithm (RA): Workers undertake tasks randomly

under the constraints in offline crowdsensing and online
crowdsensing, respectively.

• Greedy Algorithm (GA): Workers myopically undertake the
maximum value tasks under the constraints in offline crowd-
sensing and online crowdsensing, respectively.

B. Results for Offline Crowdsensing

The number of tasks for each type is uniformly in [20, 30].
Let task type M = 5 with all tasks randomly distributed in
the managed area, we obtain the sensing values with respect
to the number of workers N in Fig. 2. We can see that OCA
outperforms RA and GA, since OCA optimally assign tasks to
each worker in Eq. (8). All the sensing value tends to increase
over N due to more tasks completed by the increased workers.
One interesting phenomenon is that RA is better than GA.
Because workers are prone to selecting the same high value
tasks in GA, but a task is only assigned to one worker, thus
causing a severe waste of worker resources.

Fig. 2. Sensing value vs. number of
workers N

Fig. 3. Sensing value vs. task type M

When N = 10 and task type M varies from 3 to 6, the
impacts of M are drawn in Fig. 3 which shows OCA has a
higher sensing value than GA and RA. Besides, the sensing
value increases with M because more tasks are available to
be completed.

C. Results for Online Crowdsensing

We evaluate the performance for overall 2000 time slots,
which can fully depict the system characteristics.

1) Time Average Sensing Value: First let task type M = 5,
importance weight V = 30. Vary N from 10 to 30 with an
interval 2, the sensing values in RW and RT are demonstrated
in Fig. 4. We can see that the time average sensing values of
designed OCP and FOCP, as well as baselines GA and RA
increase with N since more tasks are undertaken by workers.
Besides, the performance order is OCP > FOCP > GA > RA.
GA is better than RA due to no-underflow constraint which
can fully utilize worker resources.

We draw the time average sensing value when task type
M changes, with N = 10, V = 30 in Fig. 5. The bars with
dotted black edges denote the results in RW, while the bars
below signify the results in RT. It shows that the time average
sensing value rises with M due to more diverse task values.
The performance order is OCP > FCOP > GA > RA as well.

Finally, we provide how importance weight V influences
the time average sensing value. Let N = 10,M = 5, and
vary V from 30 to 100. The results in Fig. 6 show that the
time average sensing value increases with V for OCP and
FOCP, but fluctuates for GA and RA. The reason is that V
only affects the “weight” on utility maximization in OCP and
FOCP. Besides, OCP and FOCP go beyond GA and RA.

2) Fairness Demonstration: Coverage ratio denotes how
many task queues are allocated with workers during the 2000
time slots. If coverage ratio is low, only a small portion of
task queues are allocated with workers, which implies that
worker resources are unfairly distributed. Let M = 5, V = 30,
we provide coverage ratio influenced by N in Fig. 7. It
illustrates that FOCP is much fairer than OCP. Besides, FOCP
can frequently achieve full task coverage (coverage ratio is
1). Thus, FOCP sacrifices the sensing value (4%-16% with
average 12%) for the fairness improvement (80%-162% with
average 116%), since worker’s fair allocation means more
attention paid to low value tasks. The impact of V is also
investigated in Fig. 8 when N = 10,M = 5. Intuitively, FOCP
still far outperforms OCP. Furthermore, coverage ratio in RW
is a bit higher than that in RT because workers in RW mobility
can cover wider regions.

3) Queue Stability: We illustrate typical backlogs of task
queue, cost queue and auxiliary queue in Figs. 9-11, which
show that all the queues will not go infinity, that is queues
maintain stability.

VI. RELATED WORK

The emerging crowdsensing paradigm has proliferated a
broad range of mobile applications [1]-[4], where the funda-
mental issue is to determine how workers undertaking tasks
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Fig. 4. Time average sensing value
vs. number of workers N

Fig. 5. Time average sensing value
vs. task type M

Fig. 6. Time average sensing value
vs. importance weight V

Fig. 7. Coverage ratio (fairness) vs.
number of workers N

Fig. 8. Coverage ratio (fairness) vs.
importance weight V

Fig. 9. Task queue backlog vs. time
slot t

Fig. 10. Cost queue backlog vs. time
slot t

Fig. 11. Auxiliary queue backlog vs.
time slot t

based on the locations. Besides, diversity issue is also an
important factor in crowdsensing [9].

Most previous works are devoted to offline crowdsensing.
Cheng et al. consider a spatial crowdsensing system, which
aims to maximize the reliability and diversity of enlisted
workers, however only the worker’s diversity is considered [5].
Kazemi et al. consider a simple location-aware and diversity
based crowdsourcing system, but only location diversity of
tasks is studied [6].

There are also a few studies for online crowdsensing. Han
et al. propose an online policy to maximize the sensing
value [12], but location awareness and worker mobility are
neglected. Gao et al. design an online incentive to maintain
adequate workers [13], but they do not decide how to assign
tasks. Moreover, hardly any works have considered the fair
allocation of worker resources in online crowdsensing.

We provide a comprehensive analysis for the crowdsensing
system in this paper. An entropy based location diversity
is used for both workers and tasks [7]. Our main efforts
lie in the online crowdsensing, where we harness Lyapunov
optimization [15] to handle the system dynamics, and further
ensure the proportional fairness [18] of worker allocation.

VII. CONCLUSION

In this paper, we study the location-aware and location
diversity based offline and online crowdsensing systems. We
first investigate offline crowdsensing, where a combinatorial
algorithm is proposed to assign tasks to workers. After that, we
mainly consider online crowdsensing with dynamic workers
and tasks. We innovatively implement Lyapunov optimization
to handle the stochastic characteristics, and further take into
account the fair allocation of worker resources. Both theo-
retical analysis and performance evaluation on real data set
demonstrate the system efficiency.
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